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Thrust 1. Experimental studies of nonequilibrium air-fuel 
plasma kinetics using advanced non-intrusive diagnostics

Nonequilibrium Thermodynamics Laboratories The Ohio State University

p g g

Task 1: Low-to-Moderate (T=300-800 K) temperature, spatial and time-Task 1: Low to Moderate (T 300 800 K) temperature, spatial and time
dependent radical species concentration and temperature
measurements in nanosecond pulse plasmas in a variety of fuel-air
mixtures pressures (P=0.1 - 5 atm), and equivalence ratios (φ~0.1-3.0)p ( ), q (φ )

Goal: Generate an extensive set of experimental data on radical speciesp p
concentrations and temperature rise; elucidate kinetic mechanisms of
low-temperature plasma chemical fuel oxidation and ignition using
kinetic modeling. Bridge the gap between room-temperature data
(low-pressure gas discharges) and high-temperature data (shock tubes)



Test Bed #1: High-temperature, high-pressure 
nanosecond pulse discharge cell
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Quartz channelTube furnace

nanosecond pulse discharge cell

Quartz channel
(open on both sides)

Tube furnace 
enclosure Flow outHigh-pressure cell

Optical access Flat mirror with a hole for 
LIF pump laser beam

Copper / alumina ceramic 
high voltage electrode block

Flow in
Optical access 

window (mirror)

High-pressure discharge cell inside a tube furnace (6 inch bore, up to T=12000 C)High pressure discharge cell inside a tube furnace (6 inch bore, up to T 1200 C)
Premixed fuel-air flow (~1 m/s), preheated in the furnace, from 0.1 atm to a few atm
Repetitive nanosecond pulse discharge plasma: 20-40 kV, 5-25 nsec, 10 Hz to 100 kHz
Optical access (LIF, TALIF, CARS, CRDS) on the sides
Fuels: hydrogen, methane, ethylene, propane, pentane, methanol & ethanol vapor



Repetitive nanosecond pulse plasma for kinetic studies: 
Air P=60 torr ν=40 kHz 40 msec burst 1 μsec gate

Nonequilibrium Thermodynamics Laboratories The Ohio State University

Air, P=60 torr, ν=40 kHz,  40 msec burst, 1 μsec gate
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Repetitive nanosecond pulse plasma for kinetic studies: 
Ethylene-air, P=40 torr, φ=1, ν=40 kHz
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Ethylene air, P 40 torr, φ 1, ν 40 kHz

• Nearly uniform plasma
during entire burst (except
pulses #1 and #2)p )

• Ignition does not occur,
likely due to rapid wall
coolingg

• Pressure is low – can this
experiment be done at higher
pressures?p



Repetitive nanosecond pulse plasma for kinetic studies: 
Ethylene-air, P=60 torr, φ=1, ν=40 kHz

Nonequilibrium Thermodynamics Laboratories The Ohio State University

• Uniform plasma during first few

Ethylene air, P 60 torr, φ 1, ν 40 kHz

p g
tens of pulses (except pulses #1
and #2)

• Well-defined filaments form in
pulse #100, persist for several
hundred pulses

• After ignition occurs, flame fillsg ,
entire discharge volume, and
plasma becomes uniform again

• Filamentation likely due toy
ionization / heating instability

• This is unacceptable: need to keep the
l if d i ti b tplasma uniform during entire burst

• We know that preheating will improve
plasma uniformity

• Sustaining plasma in a heated cell will allow
measurements at higher pressures



Time-resolved species concentrations: O and H atoms
(Two-Photon Absorption LIF with Xe and Kr calibration)
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Previous results: O atoms in air,O atom mole fraction
7 0E 5

O atom mole fraction

(Two Photon Absorption LIF with Xe and Kr calibration)
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Time-resolved species concentrations: OH
(LIF with Hencken adiabatic burner calibration)
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(LIF with Hencken adiabatic burner calibration)

6 0E 5

O atom mole fraction
7 0E 5

O atom mole fraction

Work currently underway: OH in
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Time-resolved species concentrations: NO
(LIF with calibration using known NO-N2 mixture)
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(LIF with calibration using known NO N2 mixture)

Mole fractions

Previous results : NO in air, methane-
air and ethylene-air at P=60 torr
(single-pulse, initially at T=300 K).
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Time-resolved, spatially resolved temperature
(purely rotational CARS)
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(purely rotational CARS)

Previous results: time-resolved
temperature in air and
ethylene-air at P=40 torr (burst

d i iti ll t T 300 K)0.6
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Test Bed #2: Flat flame McKenna burner 
with nanosecond pulse discharge
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with nanosecond pulse discharge

Flame

1
5-15mm

HV 
electrode

Wire mesh HVE{
~1-5 mm

Burner surface

{
McKenna 

burner
Measurement locations 
(resolution < 200 μm)

Flat flame burner inside a six-arm cross vacuum chamber (8 inch bore)
Premixed fuel-air flow (~0.1-1.0 m/s) with N2 co-flow, P=10-40 torr
Repetitive nanosecond pulse discharge plasma: 20-40 kV, 5-25 nsec, 10 Hz to 100 kHz
Optical access (LIF, TALIF, CRDS) on two perpendicular axesOptical access (LIF, TALIF, CRDS) on two perpendicular axes
Fuels: hydrogen, methane, ethylene, propane, pentane, methanol & ethanol vapor

Laboratory for Advanced Fluid Dynamics and Combustion Research



Interaction of plasma and flame chemistry: 
spatially resolved species concentrations and temperature
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spatially resolved species concentrations and temperature

Steady laminar low pressure flat flames allow spatially resolvedSteady, laminar, low-pressure flat flames allow spatially-resolved
measurements of temperature and species concentrations

Minimize transport influence; isolate kinetic effects

Can investigate full range of temperature conditions (from below 500 K to
2000 K) by adjusting measurement position (i.e. height above burner)

Typical spatial scale ~5-20 mm, spatial resolution <200 µm

Straightforward integration of nsec discharge plasma into a low-pressure
flame facility and study of plasma effects (i.e. measurements with plasmaflame facility and study of plasma effects (i.e. measurements with plasma
“off” and “on”)

Steady laminar 30 Torr 1 D flame

Laboratory for Advanced Fluid Dynamics and Combustion Research

Steady, laminar, 30 Torr, 1-D flame 



Previous low-pressure flame results (LIF):
P=10 40 torr; CH C H C H C H ; φ=0 6 1 4
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P=10-40 torr; CH4, C2H6, C3H8, C4H10; φ=0.6 -1.4
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Previous low-pressure flame results (LIF):
P=10 40 torr; CH C H C H C H ; φ=0 6 1 4

Nonequilibrium Thermodynamics Laboratories The Ohio State University
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Low-pressure flame / plasma measurements 
(LIF CRDS)
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Objective: Examine coupling of plasma and combustion kinetics in a 1 D low

(LIF, CRDS)

Objective: Examine coupling of plasma and combustion kinetics in a 1-D low-
pressure flame. Use spatially-resolved species concentration and temperature
measurements by LIF (OH, H, O, and CH) and CRDS (HO2, HCO, CH3) to
study the effect of quasi-steady (RF) and repetitively pulsed nsec dischargestudy the effect of quasi steady (RF) and repetitively pulsed nsec discharge
plasmas on low-temperature chemistry and coupling with the flame zone

Outcome: Kinetic mechanism of low-temperature plasma chemical fuelp p
oxidation and energy release, and its effect on flame speed and burn rate.
Specifically, boundary between “low-T” and “high-T” chemistry by
measuring HO2 radical concentration, at the conditions when O2 is
electronically excited

O2 + H → OH + O (high temperatures)

O2 + H +M → HO2 + M (low temperatures)

CRDS diagnostics will be used in both “test bed” experiments, (I) high-T,

Laboratory for Advanced Fluid Dynamics and Combustion Research

CRDS diagnostics will be used in both test bed experiments, (I) high T,
high-P nsec discharge plasma cell, and (II) low-P flame / plasma cell



Thrust 2. Kinetic model development and validation
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Task 8: Development and validation of a predictive kinetic model of non-
equilibrium plasma fuel oxidation and ignition, usingequilibrium plasma fuel oxidation and ignition, using
experimental results of Thrust 1

Goal: Identify key mechanisms, reaction, and rates of plasma chemical
fuel oxidation processes for a wide range of fuels, pressures,
temperatures and equivalence ratios This is absolutely essentialtemperatures, and equivalence ratios. This is absolutely essential
to predictive capability of the model.



Current state of the art: hydrocarbon-air, 
low-temperature plasma chemistry kinetic model

Nonequilibrium Thermodynamics Laboratories The Ohio State University

low temperature plasma chemistry kinetic model

• Air plasma model: equations for ground state species (N N O O O NO• Air plasma model: equations for ground state species (N, N2, O, O2, O3, NO,
NO2, N2O), charged species (electrons and ions), and excited species
(N2(A3Σ), N2(B3Π), N2(C3Π), N2(a'1Σ), O2(a1Δ), O2(b1Σ), O2(c1Σ), N(2D),
N(2P), O(1D)) produced in the plasma.

• Two-term expansion Boltzmann equation for plasma electrons

• Fuel-air plasma: model combined with GRI Mech 3.0 CxHy oxidationp x y
mechanisms, supplemented with fuel dissociation by electron impact and in
reactions with electronically excited nitrogen

• Peak E/N adjusted for pulse energy to be same as predicted by thePeak E/N adjusted for pulse energy to be same as predicted by the
nanosecond pulse discharge model

We have absolutely no reason to trust the model predictions: GRI Mech 3.0y p
(or any other combustion mechanism) is not designed to work at low
temperatures (starting at T=300 K)

Confidence in the model can be provided only by detailed kinetic
measurements such as discussed in Thrust 1 plan



Here is what we know so far: dominant radical and energy 
release processes in C2H4-air predicted by the model

Nonequilibrium Thermodynamics Laboratories The Ohio State University

Fuel energy releaseO atom generation

p 2 4 p y

O      + CH2CHO  =  H  +  CH2 + CO2
H      + O2 + M      = HO2 + M
O      + HO2 = OH     + O2
OH     + HO2 = O2 + H2O
OH + C H C H + H O

N2 + e- = N2(A3Σ)  + e-

N2 + e- = N2(B3Π)  + e-

N2 + e- = N2(C3Π)  + e-

N2 + e- = N2(a'1Σ)  + e-

OH     + C2H4 = C2H3 + H2O
HO2 + CH3 = OH     + CH3O
CH3O   + O2 = HO2 + CH2O
O2 + CH2CHO = OH + HCO  + HCO
HCO + O2 = HO2 + CO

O2 + e- = O(3P)   + O(3P,1D)        + e-

N2(C3Π)  + O2 =  N2 (a'1Σ)  + O2
N2(a'1Σ)  + O2 =  N2 (B3Π)  + O2
N2(B3Π)  + O2 =  N2 (A3Σ)  + O2

3 HCO    + O2  HO2 + CO
HO2 + HO2 = O2 + H2O2
CH2 + O2 =  H +   H   + CO2

N2(A3Σ)  + O2 =  N2 + O      + O
Fuel dissociation

C2H4 + e- = products      + e-
N2(A3Σ)  + C2H4 = N2 +  C2H3 + H

1 5E 3

Pulse energy balance, J

N2(B3Π)  + C2H4 = N2 +  C2H3 + H
N2(C3Π)  + C2H4 = N2 +  C2H3 + H
N2(a'1Σ)   + C2H4 = N2 +  C2H3 + H

O atom decay 1.0E-3

1.5E-3
Input energy

Heat, air

Heat, C2H4-air

O      + C2H4 =  CH3 + HCO
O      + C2H4 =  H      + CH2CHO
C2H3 + O2 = HCO    + CH2O
C2H3 + O2 = O      + CH2CHO

5.0E-4

O     + O2 + M   =  O3 + M
O     + O3 =  O2 + O2

1.0E-7 1.0E-6 1.0E-5 1.0E-4 1.0E-3 1.0E-2 1.0E-1
0.0E+0

Time, seconds



Model validation summary: so far so good…
but no surprise if the model fails at some point

Nonequilibrium Thermodynamics Laboratories The Ohio State University
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Thrust 3. Experimental and modeling studies 
of fundamental nonequilibrium discharge processes

Nonequilibrium Thermodynamics Laboratories The Ohio State University

of fundamental nonequilibrium discharge processes

Task 10: Characterization and modeling of nsec pulse dischargesTask 10: Characterization and modeling of nsec pulse discharges

Goal: Prediction of E/N and electron density in the plasma individualGoal: Prediction of E/N and electron density in the plasma, individual
pulse energy coupled to the plasma, and their scaling with
pressure, temperature, pulse waveform, and mixture
compositioncomposition



Two-pronged approach 
to plasma assisted ignition modeling

Nonequilibrium Thermodynamics Laboratories The Ohio State University

to plasma assisted ignition modeling

Predictive modeling of energy release rate and ignition delay time in low-Predictive modeling of energy release rate and ignition delay time in low
temperature, repetitive nanosecond pulse fuel-air plasmas requires:

• E/N in the plasma, individual pulse energy coupled to the plasma, and their scaling with
pressure temperature pulse waveform and mixture compositionpressure, temperature, pulse waveform, and mixture composition

• Air plasma and fuel-air plasma chemistry: reactions among ground state species, excited
species and radicals generated in the plasma, and their effect on energy release rate

These two problems require separate analysis:

• Nsec pulse plasma / sheath models cannot incorporate detailed reactive plasma
chemistry: too many species ( 100) and reactions ( 1 000)chemistry: too many species (~100) and reactions (~1,000)

• Detailed plasma chemistry models (quasi-neutral) cannot incorporate repetitive, nsec
time scale sheath dynamics and plasma shielding

Approach:

• Predict plasma E/N and coupled pulse energy using nsec pulse plasma / sheath model

• Incorporate results into fuel-air plasma chemistry model



Previous results: 
Repetitive nsec discharge pulse energy measurements

Nonequilibrium Thermodynamics Laboratories The Ohio State University

Repetitive nsec discharge pulse energy measurements
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Nitrogen, P=350 torr, ν=100 kHz
Nitrogen, P=300 torr,  ν=100 kHz 

Nitrogen, P 350 torr, ν 100 kHz 
0.3 seconds after start (pulse # 30,000)

Pulse energy 11 mJ/pulse 

Nitrogen, P=650 torr,  ν=100 kHz 
Discharge power 110 W

What are the electric field and the electron density?



Previous results: 
Analytic nsec pulse discharge plasma / sheath model
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L

Analytic nsec pulse discharge plasma / sheath model

• Equations for electron and ion number density

plasma

th d d

Equations for electron and ion number density
• Poisson equation for the electric field
• Plane-to-plane discharge geometry
• Voltage pulse: Gaussian fit to experimental waveform

l

sheath

cathode anode• Voltage pulse: Gaussian fit to experimental waveform
• Dielectric plate charging / plasma shielding

Analytic solution: time-dependent electron density and electric 

l,ε

ls
E

field in the plasma, coupled pulse energy
Excellent agreement with numerical solution, experimental data
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numerical model

analytic solution
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Previous results: 
Analytic nsec pulse discharge plasma / sheath model
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Power density, kW/cm3 Coupled pulse energy, mJ

Analytic nsec pulse discharge plasma / sheath model
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• Coupled pulse energy scales with the number density,  can be increased by increasing 
peak voltage reducing pulse duration
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peak voltage, reducing pulse duration

• Excellent agreement with numerical solution, experimental data



Electric field and electron density measurements: 
CARS, Thomson scattering
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CARS, Thomson scattering

Rectangular cross section 
quartz channel 

Quartz window at 
a Brewster angle

Quartz channel with 
a MgF2 window at a 
Brewster angleg Brewster angle

Flow Plasma

Entire test section mounted on a translation stage for
spatially resolved measurements.

Objective: measure time- and space-resolved electric field and electron density in
nsec pulse discharge plasmas using psec CARS and Thomson scattering;
comparison with the modelp

Outcome: predictive capability for electron impact kinetic processes in the plasma



Thrust 4. Studies of diffusion and transport of active 
species in representative 2-D reacting flow geometries
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species in representative 2 D reacting flow geometries

Task 12: Ignition and flameholding in noneq ilibri m plasma ca it flo sTask 12: Ignition and flameholding in nonequilibrium plasma cavity flows
at low static temperatures

Goal: Determine viable approaches to flameholding in high-speed flows
using low-temperature plasmas. We simply cannot process the
entire flow with the plasma!



Previous results: cavity ignition in premixed ethylene-air 
flows by nsec plasma (25 kV, 20 nsec, 40 kHz)
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flows by nsec plasma (25 kV, 20 nsec, 40 kHz)

Optical access windows
Pressure tap

To vacuum 
and FTIR

p

Main flow

Injection 
flow

High voltage 
electrode block

Ceramic plates

Fuel-air, 200 torr, 50 m/s

Pulse #140 Pulse #180 Pulse #350
Air, 200 torr, 50 m/s

#140 to #141 #180 to #181 #350 to #351

Pulse #100 Pulse #800

Fuel-air, 150 torr, 25 m/s
Pulse #400

Air, 150 torr, 25 m/s Diffuse plasma in air, filamentation in fuel-air 
during ignition, diffuse plasma after ignition



Previous results: cavity ignition and flameholding in 
premixed and non-premixed ethylene-air flows by nsec plasma
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Optical access windows

Pressure tap

premixed and non premixed ethylene air flows by nsec plasma

Intensity (arbitrary units) OH emission

To vacuum 
and FTIR

p

Main flow

y ( y )
Non-premixed flow, 100 m/sec

High voltage 
electrode block

Ceramic 
plates

0 0 0 2 0 4 0 6 0 8 1 0

Premixed flow, 
100 m/sec

0.0 0.2 0.4 0.6 0.8 1.0

Time (sec)

• Ignition and stable flameholding in bothIgnition and stable flameholding in both 
premixed and non-premixed flows up to 100 
m/sec (global φ=1 in both cases)

• 80 90% burned fuel fraction• 80-90% burned fuel fraction

• Plasma power ~100 W, combustion energy 
release 35 kW

Fuel-air, 175 torr, 85 m/s • After ignition, plasma needs to be “on” at 
all times (flame blow-off without plasma)



Ignition and flameholding 
in nonequilibrium plasma cavity flows
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in nonequilibrium plasma cavity flows

Objectives:

• F rther st dies of ca it ignition and flameholding b repetiti e nsec• Further studies of cavity ignition and flameholding by repetitive nsec
pulse plasmas in fuel injection flows (hydrogen and hydrocarbons)

• High frame rate (10-20 kHz) NO and OH PLIF imaging of ignitiong ( ) g g g
process using burst mode laser

• Increasing flow velocity beyond 100 m/sec, operating at low global
i l ti ( 0 1 0 2)equivalence ratios (φ=0.1-0.2)

• Comparison with kinetic modeling calculations using reduced
plasma chemical ignition mechanism. Plasma flameholdingplasma chemical ignition mechanism. Plasma flameholding
mechanism after ignition – thermal or not?

Outcome: Demonstration of true predictive capability of the model


